An Analysis of Java Loop Execution Time vs Loop Length

Christiffer Vogts

In the context of computational randomness and performance benchmarking, this study
investigates the relationship between loop length and execution time in Java. The primary
objective was to explore whether a simple randomized output mechanism could be implemented
in Java using a for loop, and to determine how the length of such a loop influences the time
required for execution. This inquiry emerged from a broader goal: to develop a method for
generating outputs that exhibit characteristics of "true randomness" within the constraints of

Java’s pseudo-random number generation.

A basic Java program was constructed to execute a loop of variable length, where each
loop calculates a random number and outputs the result to the console. The execution time for
each loop length was recorded using Microsoft Excel to identify trends and correlations.
Preliminary observations indicated that the time required to complete the loop increased

disproportionately with the number of iterations, suggesting a non-linear growth pattern.

The experimental setup involved a single Java class, as shown in Figure 1, executed on a
Dell XPS 9530 laptop. The code is based off a loop of user defined length and performs a
compound arithmetic operation involving three calls to Math.random(). Specifically, the

expression:

((Math.random() * 100 + 1) * (Math.random() * 100 + 1)) / (Math.random() * 100 + 1)

was chosen arbitrarily to simulate a computationally non-trivial randomization process. Each
iteration calculates this expression, assigns the result to a variable, outputs it to the console, and
then increments the variable once more. The total execution time of the loop is measured using
System.currentTimeMillis() before and after the loop execution.

package main;

public class Main {

public static void main(String[] args) {

double numb_on =0;

int length = 1000;

long loop = System.currentTimeMillis();
for (inti=0;i<length; i++){

numb_on =((Math.random() * 100 + 1) * (Math.random() * 100 + 1)) /
(Math.random() * 100 + 1);

System.out.println(numb_on);

numb_on++;

}

System.out.println(System.currentTimeMillis()-loop);

Figure 1. Java code used to measure loop execution time as a function of loop length.

Following each execution, the recorded time was manually entered into an Excel
spreadsheet alongside the corresponding loop length. This enabled the construction of a time-
series dataset for further analysis. Table 1 presents the raw data collected across multiple trials,

while Graph 1 visualizes the relationship between loop length and execution time.

Upon plotting the average execution time against loop length, a clear exponential trend emerged.

Graph 2 illustrates this trend, with the best-fit exponential curve described by the equation:

Y = 835.71 124

Where y = average time and x = loop length

This suggests that the time complexity of the loop, under the specific conditions of
randomized arithmetic and console output, grows exponentially with respect to the number of
iterations. It is important to note that this behavior is influenced not only by the arithmetic
operations but also by the overhead associated with console I/O, which is known to be relatively

expensive in Java.

Java runtime for loop length

Tria\loop length 100000 10000 1000 100 | 10 1
1 326 65 20 4| 1 1

2 327 56 24 5| 1 1

3 297 65 18 5| 1 1

4 303 69 20 41 1 0

5 290 66 22 41 1 1

6 308 65 20 41 1 0

7 292 70 21 5| 1 1

8 288 59 21 41 1 0

9 339 56 19 5| 1 1

10 288 60 19 5| 1 2

avg 305.8 63.1 204 45| 1 0.8
STD 18.62973 | 5.043147 | 1.712698 | 0.527046 | 0 | 0.632456

Table 1. the table of all the data values where time is measured in milliseconds

The findings raise several important considerations for developers and researchers
working with randomized algorithms or performance sensitive applications in Java. First, while the

use of Math.random() provides sufficient pseudo-randomness for many applications, the

computational cost of repeated random number generation and output operations must be

accounted for, especially in high-frequency or real-time systems.

Loop length time seperated by loop size

10 @ @ {] {]
@ e [] []
3 @ © o {]
@ o [] []
= 6@ @ ° °
B ® e ° °
4 @ @ { {]
@ e [] []
2 @9 o o {]
a o [] []
0 @
0 50 100 150 200 250 300 350
Time [ms]

@ loop length 100000 @ loop length 10000 @ loop length 1000
@ loop length 100 @ loop length 10 @ loop length 1

Graph 1. A visualization of the time each trial took to complete.

Second, the exponential growth in execution time suggests that loop-based
randomization strategies may not scale efficiently. This has implications for algorithm design,
particularly in contexts where large datasets or high iteration counts are involved. Future work
could explore alternative randomization techniques, such as buffered output or parallel

processing, to mitigate performance bottlenecks.

Avrage time spent for each langth [ms]
350

300 y =835.71e"1-248
250
200
150

100

50

Graph 2. A visualization of the mean speed with the trend line shown to the left.

This experiment demonstrates that the execution time of a Java for loop performing
randomized arithmetic and console output increases exponentially with loop length. While the
initial goal was to explore randomness, the study revealed critical insights into the performance
characteristics of loop-based operations in Java. These findings underscore the importance of
considering computational overhead when designing randomized systems and provide a

foundation for further exploration into efficient randomization and benchmarking techniques.

